

ПРОМЫШЛЕННЫЕ СИСТЕМЫ КОНДИЦИОНИРОВАНИЯ MIDEA

ФАНКОЙЛЫ С ИНВЕРТОРНЫМ ПРИВОДОМ ПОСТОЯННОГО ТОКА

Модельный ряд фанкойлов

Кассетный тип

однопоточный

МКС-V_R-В (2-трубный)

Модель	300	400	500
Мощность, кВт	2.64	3.94	5.09

Кассетный тип

компактный четырехпоточный 600х600

МКD-V (2-трубный)

Модель	300	400	500
Мощность, кВт	2.98	3.96	4.2

МКD-V_FA (4-трубный)

Модель	300	400	500
Мощность, кВт	2.161	2.777	2.77

Кассетный тип

четырехпоточный

МКА-V_R (2-трубный)

Модель	600	750	850	950	1200	1500
Мощность, кВт	5.93	6.12	7.52	7.84	7.87	11.19

МКА-V_FA (4-трубный)

Модель	600	750	850	950	1200	1500
Мощность, кВт	5.93	6.12	7.52	7.84	7.87	11.19

Канальный тип

средненапорный

МКТ2-V (2-трубный)	2-ряд
---------------------------	-------

Модель	200	300	400	500	600	800	1000	1200
Мощность, кВт	2.02	2.82	3.31	3.83	4.78	6.7	7.92	9.83

МКТ3-V (2-трубный)						3-ps	ядны		
	Модель	200	300	400	500	600	800	1000	1200

МКТ4-V (2-трубный)	4-рядный

Модель	200	300	400	500	600	800	1000	1200
Мощность, кВт	2.22	3.19	4.06	4.46	5.87	6.65	7.98	9.76

МКТ3-VF (4-трубный)	3-рядный
----------------------------	----------

Модель	200	300	400	500	600	800	1000	1200
Мощность, кВт	1.4	2.2	2.5	3	4.2	5.3	6.7	8.2

Напольно-потолочный тип

Н1 Серия

3-рядный

МКН1-V_-R3 (2-трубный)

Модель	150	250	350	500	700	800
Мощность, кВт	1.58	2.51	3.75	4.59	5.29	6.22
MKH1-VR4	4-	рядный				
Модель	150	250	350	500	700	800
Модель Мощность, кВт	150 2.16	250 2.72	350 4.09	500 5.21	700 6.16	800 6.66

модель	150	250	350	500	700
Мощность, кВт	1.63	2.41	3.7	4.49	5.34

Напольно-потолочный тип Н2 Серия

MIZIO V DZ /O --- · S.········

3-рядный

МКН2-V_-R3 (2-трубный)

Модель	150	250	350	500	700	800		
Мощность, кВт	1.65	2.65	3.85	4.65	6	7.35		
МКН2-VR4 (2-трубный) 4-рядн								
Модель	150	250	350	500	700	800		
Мощность, кВт	2.25	3.05	4.2	5.35	6.75	8.25		
МКН2-V_F-R4 (4-трубный) 4-рядный								
Manage	150	050	750	500	700	000		

_						
Модель	150	250	350	500	700	800
Мощность, кВт	1.7	2.7	3.8	4.6	6.05	7.65

Напольно-потолочный тип

Н3 Серия

MKH3-VR3	3-рядный						
Модель	150	250	350	500	700	800	
Мощность, кВт	1.65	2.65	3.85	4.65	6	7.35	
MKH3-VR4	4-	рядный					
Модель	150	250	350	500	700	800	
Мощность, кВт	2.25	3.05	4.2	5.35	6.75	8.25	
МКН3-V_F-R4 (4-трубный) 4-рядный							
	400						

Модель	150	250	350	500	700	800
Мощность, кВт	1.7	2.7	3.8	4.6	6.05	7.65

Настенный тип

MKG-V_C (2-трубный)

The V_C (2 Tpyothshir)										
Модель	250	300	400	500	600					
Мошность, кВт	1.94	2.64	2.94	4.01	4.61					

Настенный тип

MKG-V_D (2-трубный)

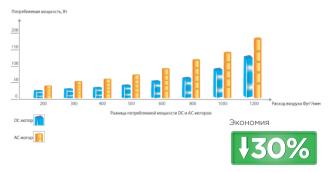
Модель	250	300	400	500	600
Мощность, кВт	1.94	2.64	2.94	4.01	4.61

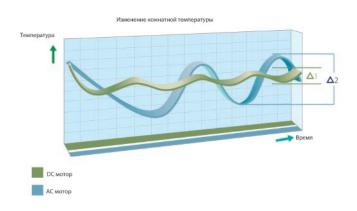
Преимущества DC-фанкойлов


Фанкойлы с бесщеточными двигателями постоянного тока

DC-фанкойл — это энергосберегающее климатическое оборудование, обладающее высокой энергоэффективностью, низким уровнем шума и точным контролем температуры.

Бесшумная работа


Шумовой фон моделей приемлем даже для самых чувствительных пользователей. Уровень шума фанкойлов в рабочем состоянии от $20.7~\mathrm{д}$ Б(A)


Сохраняйте спокойствие, экономьте больше

Потребляемая мощность DC-фанкойлов с приводом постоянного тока может быть снижена до 30% по сравнению с соответствующим типом AC-фанкойлов переменного тока.

Высокоточное поддержание температуры

Двигатель вентилятора с инвертором постоянного тока мгновенно регулирует поток воздуха в зависимости от тепловой нагрузки, обеспечивая меньшие колебания температуры.

Забота о вашем дыхании

В комплект поставки всех фанкойлов входит фильтр очистки воздуха.

Кассетный тип

однопоточный

MKC

Гибкая установка

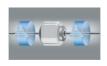
Дренажный насос может поднимать конденсат на высоту до 750 мм, что увеличивает вариативность монтажа в помещениях с различной конфигурацией подпотолочного пространства.

Низкий уровень шума

Оптимизированное воздухораспределение и конструкция трёхскоростного малошумного вентилятора обеспечивают комфортную среду в помещении*.

Оптимальное распределение воздуха

Поток воздуха в одном направлении гарантирует быстрое охлаждение или нагрев воздуха независимо от места установки фанкойла.


Сверхтонкий корпус

Компактный дизайн корпуса толщиной 153 мм особенно подходит для установки в подвесных потолках в условиях ограниченного пространства.

Приток свежего воздуха

Возможна подача свежего воздуха в помещение через специально подготовленное отверстие в корпусе блока.

DC-фанкойлы с инверторным приводом

Бесщеточные двигатели вентилятора постоянного тока от ведущих мировых производителей Panasonic/Nedic/Welling.

Индивидуальные пульты

RM05/BG(T)E-A В комплекте

KJR-75A/BK-E Опция

ССМ-30/ВКЕ-А Опция

До 64 фанкойлов могут быть подключены к центральным контроллерам Midea через индивидуальный порт XYE.

Подключение к шлюзу Modbus через порт PQE.

Технические характеристики

2-трубный

2 труопы	/ I		насос					
внутренни	й блок		MKC-V300R-B	MKC-V400R-B	MKC-V600R-B			
ДЕКОРАТИВН	АЯ ПАНЕЛЬ		MBQ1-02D	MBQ1-02D	MBQ1-01D			
	Производительность (выс./сред./низ.)	кВт	2.64/2.23/1.68	3.94/3.43/3.07	5.09/4.36/3.58			
Охлаждение	Расход воды (выс./сред./низ.)	м ³ /ч	0.49/0.42/0.33	0.6/0.52/0.45	0.87/0.70/0.55			
Эхлаждение	Гидросопротивление (выс./сред./низ.)	кПа	8.6/6.3/3.7	23.8/18.1/14.8	38.2/28.9/19.4			
	Потребляемая мощность (выс./сред./низ.)	Вт	22/18/14	23/19/17	38/27/19			
	Производительность (выс./сред./низ.)	кВт	3.85/3.27/2.53	4.86/3.94/3.24	6.49/5.3/4.01			
Нагрев	Расход воды (выс./сред./низ.)	м ³ /ч	0.5/0.42/0.32	0.59/0.49/0.42	0.86/0.67/0.48			
	Гидросопротивление (выс./сред./низ.)	кПа	7.7/5.8/3.3	20.1/15.5/12.4	32.4/24.6/16.4			
	Потребляемая мощность (выс./сред./низ.)	Вт	16/11/8	16/12/10	31/20/12			
Электропитани	1e	В, Гц, Ф	220-240, 50, 1	220-240, 50, 1	220-240, 50, 1			
Рабочий ток		Α	0.39	0.45	0.59			
Расход воздуха	а (выс./сред./низ.)	M ³ /Ч	510/432/330	630/509/428	1000/786/583			
/ровень шума	(выс./сред./низ.)	дБ(А)	44.3/40.6/33.5	36.6/32.6/30.4	44.6/38.6/33.1			
 Цекоративная	Габариты (ШхВхГ)	ММ	1180x25x465	1350 x25x505	1350 x25x505			
анель	Bec	KГ	3.5	4.0	4.0			
Знутренний	Габариты (ШхВхГ)	ММ	1054x153x428	1275x189x450	1275x189x450			
блок	Bec	КГ	12.5	17.5	17.5			
Грубные	Диаметр труб на вх./вых.	дюйм		G1/2				
соединения	Дренажная труба	ММ		НД 25				
⁄IK-пульт	В комплекте			RM05/BG(T)E-A				

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.) 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.) 3. Уровень шума измерялся в безэховой камере.

Кассетный тип

четырехпоточный компактный

MKD

Распределение воздушного потока на 360°

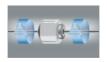
Декоративная панель с круговым распределением воздуха обеспечивает быстрое и равномерное охлаждение или нагрев воздуха в помещении.

Гибкая установка

Дренажный насос может поднимать конденсат на высоту до 500 мм, что увеличивает вариативность монтажа в помещениях с различной конфигурацией подпотолочного пространства.

Компактный дизайн

Корпус меньшего размера позволяет размещать кассетный блок в модуле стандартного подвесного потолка 600x600 без перекрытия соседних ячеек и выступа декоративной панели.


Низкий уровень шума

Оптимизированное воздухораспределение и конструкция трёхскоростного малошумного вентилятора обеспечивают комфортную среду в помещении.

Приток свежего воздуха

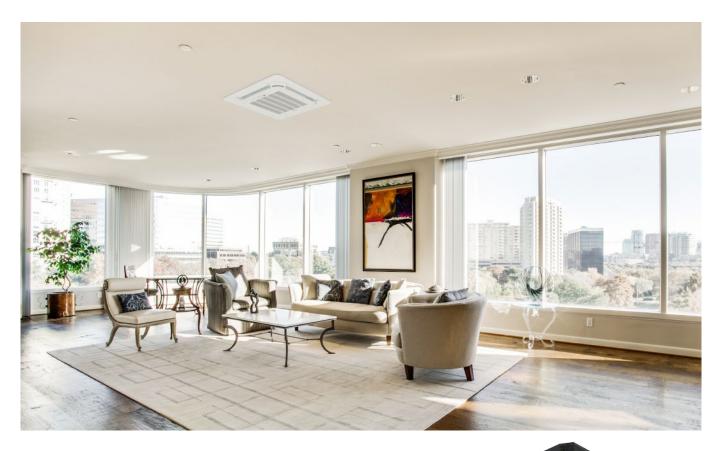
Возможна подача свежего воздуха в помещение через специально подготовленное отверстие в корпусе блока.

DC-фанкойлы с инверторным приводом

Бесщеточные двигатели вентилятора постоянного тока от ведущих мировых производителей Panasonic/Nedic/Welling.

Индивидуальные пульты

RO5/BGE В комплекте

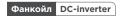


KJR-29B/BK-E Опция

ССМ30/ВКЕ-А Опция

До 64 фанкойлов могут быть подключены к центральным контроллерам Midea через индивидуальный порт XYE.

Подключение к шлюзу Modbus через порт PQE.



Автоматический перезапуск

Технич	еские характерист	ики		2-трубный	1	4-трубный		
ВНУТРЕННИ	й блок		MKD-V300	MKD-V400	MKD-V500	MKD-V300FA	MKD-V400FA	MKD-V500FA
ДЕКОРАТИВН	АЯ ПАНЕЛЬ		T-MBQ4-03B1	T-MBQ4-03B1	T-MBQ4-03B1	T-MBQ4-03B1	MBQ4-03B1 T-MBQ4-03B1 T-MBQ4	
	Производительность (выс./сред./низ.)	кВт	2.98/2.53/2	3.96/3.26/2.76	4.2/3.48/3.01	2.16/1.86/1.49	2.78/2.38/2.05	2.77/2.38/2.07
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.53/0.45/0.35	0.7/0.58/0.51	0.75/0.61/0.54	0.42/0.37/0.3	0.53/0.46/0.4	0.56/0.49/0.43
Охлаждение	Гидросопротивление (выс./сред./низ.)	кПа	10.0/7.0/5.0	11.5/8.2/6.5	12.3/8.6/7.4	17.4/13.5/9.3	13.15/9.4/7.0	16.8/13.1/10.3
	Потребляемая мощность (выс./сред./низ.)	Вт	15/9/5	28/15/9	43/28/21	15/10/6	30/26/21	35/19/12
	Производительность (выс./сред./низ.)	кВт	2.61/2.31/2.24	4.08/3.34/2.73	4.95/3.99/3.26	3.13/2.63/2.08	3.71/3.14/2.65	3.94/3.30/2.83
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.64/0.54/0.42	0.83/0.67/0.56	0.87/0.70/0.58	0.32/0.28/0.23	0.37/0.32/0.28	0.42/0.36/0.32
	Гидросопротивление (выс./сред./низ.)	кПа	12.1/8.5/5.3	9.2/8.6/6	9.4/8.23/6.1	23.5/17.1/11.3	24.1/17.9/13.1	26.8/19.2/14.5
	Потребляемая мощность (выс./сред./низ.)	Вт	14/9/5	28/16/10	33/18/11	17/10/6	32/18/11	35/18/11
Электропитани	1e	В, Гц, Ф		220-240, 50, 1			220-240, 50, 1	
Рабочий ток		Α	0.2	0.3	0.3	0.24	0.4	0.48
Расход воздуха	э (выс./сред./низ.)	м³/ч	535/429/322	610/477/381	781/611/494	493/395/295	669/523/415	673/526/425
Уровень звуко	вого давления(выс./сред./низ.)	дБ(А)	39/33/27	42/36/30	43/38/32	39/33/27	42/35/30	44/39/31
Декоративная	Габариты (ШхВхГ)	MM		647×50×647			647×50×647	
панель	Bec	КГ		2.5			2.5	
Внутренний	Габариты (ШхВхГ)	MM		575×261×575			575×261×575	
блок	Bec	КГ		16.5			16.5	
Трубные	Диаметр труб на вх./вых.	дюйм		G3/4		Холодная во	ода G3/4; Горяч	ая вода: G1/2
соединения	Дренажная труба	MM		НД 25			НД 25	
ИК-пульт	В комплекте			R05/BGE			R05/BGE	

^{1.} Условия охлаждения: температура воды на входе 7 °C, температура воды на выходе 12 °C, температура воздуха на входе 27 °C (сух. терм.)/19 °C (влажн. терм.) 2. Условия нагрева 2-трубные модели: температура воды на входе 45 °C, температура воды на выходе 40 °C, температура воздуха на входе 20 °C (сух. терм.) / 15 °C (влажн. терм.) 3. Условия нагрева 4-трубные модели: температура воды на входе 65 °C, температура воды на входе 55 °C, температура воздуха на входе 20 °C (сух. терм.) 4. Уровень шума измерялся в безэховой камере.

Кассетный тип

четырехпоточный стандартный

MKA

Распределение воздушного потока на 360°

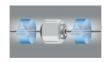
Декоративная панель с круговым распределением воздуха обеспечивает быстрое и равномерное охлаждение или нагрев воздуха в помещении.

Гибкая установка

Дренажный насос может поднимать конденсат на высоту до 750 мм, что увеличивает вариативность монтажа в помещениях с различной конфигурацией подпотолочного пространства.

Компактный дизайн

Высота моделей от 230 до 330 мм, компактный и простой дизайн обеспечивает простую и быструю установку на объекте.


Низкий уровень шума

Оптимизированное воздухораспределение и конструкция трёхскоростного малошумного вентилятора обеспечивают комфортную среду в помещении.

Приток свежего воздуха

Возможна подача свежего воздуха в помещение через специально подготовленное отверстие в корпусе блока.

DC-фанкойлы с инверторным приводом постоянного тока

ІБесщеточные двигатели вентилятора постоянного тока от ведущих мировых производителей Panasonic/Nedic/Welling.

Индивидуальные пульты

RO5/BGE В комплекте

KJR-29B/BK-E Опция

ССМ30/ВКЕ-А Опция

До 64 фанкойлов могут быть подключены к центральным контроллерам Midea через индивидуальный порт XYE.

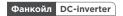
Подключение к шлюзу Modbus через порт PQE.

Технические характеристики

2-трубный

				пасс			
й блок		MKA-V600R	MKA-V750R	MKA-V850R	MKA-V950R	MKA-V1200R	MKA-V1500R
НАЯ ПАНЕЛЬ		T-MBQ4-01E	T-MBQ4-01E	T-MBQ4-01E	T-MBQ4-01E	T-MBQ4-01E	T-MBQ4-01E
Производительность (выс./сред./низ.)	кВт	5.93/5.3/4.4	6.12/5.45/4.6	7.52/6.46/5.89	7.84/6.84/6.35	7.87/7.12/6.67	11.19/8.82/7.48
Расход воды (выс./сред./низ.)	м³/ч	1.05/0.92/0.77	1.10/0.96/0.81	1.37/1.18/1.07	7.84/6.84/6.35	7.87/7.12/6.67	11.19/8.82/7.48
Гидросопротивление (выс./сред./низ.)	кПа	19.2/15.4/11.0	21.3/21.3/12.4	20.1/15.3/12.6	1.43/1.24/1.1	1.4/1.3/1.2	2.0/1.5/1.3
Потребляемая мощность (выс./сред./низ.)	Вт	41/27/17	49/31/20	68/37/30	22/17/14	22/18/16	37/23/16
Производительность (выс./сред./низ.)	кВт	6.06/5.72/5.32	6.27/5.88/5.43	7.88/7.48/6.76	8.49/8/7.35	9.16/8.54/7.9	10.07/9.37/8.68
Расход воды (выс./сред./низ.)	м³/ч	1.06/0.92/0.76	1.10/0.96/0.81	1.37/1.18/1.07	1.71/1.45/1.33	1.73/1.57/1.46	2.35/1.86/1.59
Гидросопротивление (выс./сред./низ.)	кПа	16.9/12.7/8.6	19.1/14.8/10.6	18.2/13.6/11.1	28.1/20.7/17.4	28.8/24.0/20.7	49.2/31.2/23.3
Потребляемая мощность (выс./сред./низ.)	Вт	42/28/17	49/31/19	67/37/28	76/43/33	86/59/45	128/58/38
ие	В, Гц, Ф			220-24	0, 50, 1		
	А	0.5	0.5	0.6	0.7	0.8	1.1
а (выс./сред./низ.)	м³/ч	1175/987/768	1229/1020/810	1451/1146/1012	1530/1224/1101	1581/1371/1236	1871/1415/1198
(выс./сред./низ.)	дБ(А)	43/39/33	44/40/34	45/40/37	46/42/39	48/44/41	49/43/39
Габариты (ШхВхГ)	ММ			950×4	5×950		
Bec	ΚΓ				5		
Габариты (ШхВхГ)	ММ	840×2	30×840		840×30	00×840	
Bec	ΚΓ	23	23	27	27	27	29.5
Диаметр труб на вх./вых.	дюйм			RC	3/4		
Дренажная труба	ММ	НД 32					
В комплекте				R05,	/BGE		
	Производительность (выс./сред./низ.) Расход воды (выс./сред./низ.) Гидросопротивление (выс./сред./низ.) Потребляемая мощность (выс./сред./низ.) Расход воды (выс./сред./низ.) Расход воды (выс./сред./низ.) Гидросопротивление (выс./сред./низ.) Гидросопротивление (выс./сред./низ.) Потребляемая мощность (выс./сред./низ.) потребляемая мощность (выс./сред./низ.) те а (выс./сред./низ.) (выс./сред./низ.) Габариты (ШхВХГ) Вес Габариты (ШхВХГ) Вес Диаметр труб на вх./вых. Дренажная труба	НАЯ ПАНЕЛЬ Производительность (выс./сред./низ.) кВт Расход воды (выс./сред./низ.) м²/ч Гидросопротивление (выс./сред./низ.) кПа Потребляемая мощность (выс./сред./низ.) вт Производительность (выс./сред./низ.) кВт Расход воды (выс./сред./низ.) кПа Потребляемая мощность (выс./сред./низ.) вт не В, Гц. Ф а (выс./сред./низ.) м²/ч (выс./сред./низ.) дБ(А) Габариты (ШхвхГ) мм Вес кг Габариты (ШхвхГ) мм Вес кг Диаметр труб на вх./вых. дюйм Дренажная труба мм	НАЯ ПАНЕЛЬ Т-МВQ4-01Е Производительность (выс./сред./низ.) кВт 5.93/5.3/4.4 Расход воды (выс./сред./низ.) м³/ч 1.05/0.92/0.77 Гидросопротивление (выс./сред./низ.) кПа 19.2/15.4/11.0 Потребляемая мощность (выс./сред./низ.) Вт 41/27/17 Производительность (выс./сред./низ.) кВт 6.06/5.72/5.32 Расход воды (выс./сред./низ.) м³/ч 1.06/0.92/0.76 Гидросопротивление (выс./сред./низ.) Вт 42/28/17 не В, Гц, Ф а (выс./сред./низ.) дб (д) 43/39/33 (выс./сред./низ.) дб (д) 43/39/33 Габариты (ШхВхГ) мм 840×2: Вес кг 23 Диаметр труб на вх./вых. дюйм Дренажная труба мм	НАЯ ПАНЕЛЬ Т-MBQ4-01E Т-MBQ4-01E Производительность (выс./сред./низ.) кВт 5.93/5.3/4.4 6.12/5.45/4.6 Расход воды (выс./сред./низ.) м³/ч 1.05/0.92/0.77 1.10/0.96/0.81 Гидросопротивление (выс./сред./низ.) кПа 19.2/15.4/11.0 21.3/21.3/12.4 Потребляемая мощность (выс./сред./низ.) Вт 41/27/17 49/31/20 Производительность (выс./сред./низ.) кВт 6.06/5.72/5.32 6.27/5.88/5.43 Расход воды (выс./сред./низ.) м³/ч 1.06/0.92/0.76 1.10/0.96/0.81 Гидросопротивление (выс./сред./низ.) кПа 16.9/12.7/8.6 19.1/14.8/10.6 Потребляемая мощность (выс./сред./низ.) Вт 42/28/17 49/31/19 не В, Гц. Ф А 0.5 0.5 а (выс./сред./низ.) дБ(A) 43/39/33 44/40/34 Габариты (ШхВхГ) мм 840×230×840 Вес кг 23 23 Диаметр труб на вх./вых. дюйм Дренажная труба	Й БЛОК MKA-V600R MKA-V750R MKA-V850R НАЯ ПАНЕЛЬ T-MBQ4-01E T-MBQ4-01E T-MBQ4-01E Производительность (выс./сред./низ.) кВт 5.93/5.3/4.4 6.12/5.45/4.6 7.52/6.46/5.89 Расход воды (выс./сред./низ.) м³/ч 1.05/0.92/0.77 1.10/0.96/0.81 1.37/1.18/1.07 Гидросопротивление (выс./сред./низ.) кПа 19.2/15.4/11.0 21.3/21.3/12.4 20.1/15.3/12.6 Потребляемая мощность (выс./сред./низ.) вт 41/27/17 49/31/20 68/37/30 Производительность (выс./сред./низ.) кВт 6.06/5.72/5.32 6.27/5.88/5.43 7.88/7.48/6.76 Расход воды (выс./сред./низ.) м³/ч 1.06/0.92/0.76 1.10/0.96/0.81 1.37/1.18/1.07 Гидросопротивление (выс./сред./низ.) кПа 16.9/12.7/8.6 19.1/14.8/10.6 18.2/13.6/11.1 Потребляемая мощность (выс./сред./низ.) Вт 42/28/17 49/31/19 67/37/28 не В, Гц, Ф 220-24 А 0.5 0.5 0.6 а (выс./сред./низ.) дБ(д) 43/39/33 44/40/34 45/40/37 <td>Й БЛОК MKA-V600R MKA-V750R MKA-V850R MKA-V950R НАЯ ПАНЕЛЬ T-MBQ4-01E T-MA46.84 T-MBQ4-01E T-MBQ4-01E T-MBQ4-01E T-MA46.84 T-MBQ4-01E T-MA46.84 T-MBQ4-01E T-MBQ4-01E <</td> <td> МКА-V600R МКА-V750R МКА-V750R МКА-V750R МКА-V750R МКА-V750R МКА-V1200R МКА-ПАБА Производительность (выс./сред./низ.) КВТ 5.93/5.3/4.4 6.12/5.45/4.6 7.52/6.46/5.89 7.84/6.84/6.35 7.87/7.12/6.67 Расход воды (выс./сред./низ.) КПа 19.2/15.4/11.0 21.3/12.4 20.1/15.3/12.6 1.43/1.24/1.1 1.4/1.3/1.2 Потребляемая мощность (выс./сред./низ.) ВТ 41/27/17 49/31/20 68/37/30 22/17/14 22/18/16 Производительность (выс./сред./низ.) КВТ 6.06/5.72/5.32 6.27/5.88/5.43 7.88/7.48/6.76 8.49/8/7.35 9.16/8.54/7.9 Расход воды (выс./сред./низ.) М³/ч 1.06/0.92/0.76 1.10/0.96/0.81 1.37/1.18/1.07 1.71/1.45/1.33 1.73/1.57/1.46 1.74/1.24 1.24/1.1 1.4/1.3/1.2 1.24/1.1 1.24/1.3/1.2 1.24/1.1 1.24</td>	Й БЛОК MKA-V600R MKA-V750R MKA-V850R MKA-V950R НАЯ ПАНЕЛЬ T-MBQ4-01E T-MA46.84 T-MBQ4-01E T-MBQ4-01E T-MBQ4-01E T-MA46.84 T-MBQ4-01E T-MA46.84 T-MBQ4-01E T-MBQ4-01E <	МКА-V600R МКА-V750R МКА-V750R МКА-V750R МКА-V750R МКА-V750R МКА-V1200R МКА-ПАБА Производительность (выс./сред./низ.) КВТ 5.93/5.3/4.4 6.12/5.45/4.6 7.52/6.46/5.89 7.84/6.84/6.35 7.87/7.12/6.67 Расход воды (выс./сред./низ.) КПа 19.2/15.4/11.0 21.3/12.4 20.1/15.3/12.6 1.43/1.24/1.1 1.4/1.3/1.2 Потребляемая мощность (выс./сред./низ.) ВТ 41/27/17 49/31/20 68/37/30 22/17/14 22/18/16 Производительность (выс./сред./низ.) КВТ 6.06/5.72/5.32 6.27/5.88/5.43 7.88/7.48/6.76 8.49/8/7.35 9.16/8.54/7.9 Расход воды (выс./сред./низ.) М³/ч 1.06/0.92/0.76 1.10/0.96/0.81 1.37/1.18/1.07 1.71/1.45/1.33 1.73/1.57/1.46 1.74/1.24 1.24/1.1 1.4/1.3/1.2 1.24/1.1 1.24/1.3/1.2 1.24/1.1 1.24

насос



4-трубный

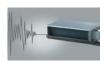
ВНУТРЕННИ	й блок		MKA-V600FA	MKA-V750FA	MKA-V850FA	MKA-V950FA	MKA-V1200FA	MKA-V1500FA
ДЕКОРАТИВН	НАЯ ПАНЕЛЬ		T-MBQ4-01E	T-MBQ4-01E	T-MBQ4-01E	T-MBQ4-01E	T-MBQ4-01E	T-MBQ4-01E
	Производительность (выс./сред./низ.)	кВт	4.96/4.38/3.64	5.18/4.56/3.88	5.13/4.41/4.06	5.31/4.59/4.28	7.98/7.25/6.70	8.04/6.62/5.84
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.9/0.8/0.67	0.94/0.83/0.71	0.93/0.81/0.75	0.96/0.84/0.78	1.42/1.29/1.2	1.43/1.19/1.05
Охлаждение	Гидросопротивление (выс./сред./низ.)	кПа	14.8/11.5/8.1	15.9/12.4/9.0	16/14.2/10.4	16.4/12.6/10.9	33.9/30.0/24.0	33.0/22.6/17.7
	Потребляемая мощность (выс./сред./низ.)	Вт	62/44/30	72/50/35	80/49/40	90/54/43	121/83/66	139/70/49
	Производительность (выс./сред./низ.)	кВт	6.15/5.43/4.61	6.52/5.79/4.94	6.68/5.75/5.28	6.74/5.83/5.4	9.75/8.96/8.42	9.93/8.33/7.51
Hamman	Расход воды (выс./сред./низ.)	м³/ч	0.58/0.52/0.45	0.61/0.55/0.47	0.62/0.54/0.50	0.63/0.55/0.52	0.89/0.82/0.77	0.90/0.76/0.69
Нагрев	Гидросопротивление (выс./сред./низ.)	кПа	25.3/20.5/14.5	32/25.7/19.1	32.6/24.7/21.2	34/26.6/23.5	42.4/36.6/32.6	48.7/32.5/27.0
	Потребляемая мощность (выс./сред./низ.)	Вт	56/36/21	67/42/25	75/41/31	84/46/35	118/79/61	125/64/42
Электропитан	1e	В, Гц, Ф			220-24	10, 50, 1		
Рабочий ток		А	0.48	0.6	0.72	0.72	1.08	1.32
Расход воздух	а (выс./сред./низ.)	м³/ч	42/37/31	44/39/33	45/39/36	46/41/38	48/44/42	49/43/38
Уровень шума	(выс./сред./низ.)	дБ(А)	1184/997/783	1278/1057/855	1328/1052/927	1403/1115/1001	1642/1421/1285	1708/1297/1096
Декоративная	Габариты (ШхВхГ)	ММ			950×4	15×950		
панель	Bec	KΓ				6		
Внутренний	Габариты (ШхВхГ)	ММ			840×3	00×840		
блок	Bec	KΓ	27.5	27.5	27.5	27.5	30.0	30.0
Трубные	Диаметр труб на вх./вых.	дюйм			цная вода: RC3/	4; Горячая вода	: RC1/2	
соединения	Дренажная труба	ММ	НД 32					
ИК-пульт	В комплекте				R05	/BGE		

[.] Условия охлаждения: температура воды на входе 7 °C, температура воды на входе 12 °C, температура воздуха на входе 27 °C (сух. терм.)/19 °C (влажн. терм.) 2. Условия нагрева 2-трубные модели: температура воды на входе 45 °C, температура воды на выходе 40 °C, температура воздуха на входе 20 °C (сух. терм.) / 15 °C (влажн. терм.) 3. Условия нагрева 4-х трубные модели: температура воды на входе 65 °C, температура воды на входе 55 °C, температура воздуха на входе 20 °C (сух. терм.) 4. Уровень шума измерялся в безэховой камере.

Канальный тип

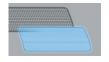
средненапорный

MKT


MKT_-V_(F)

Компактный размер

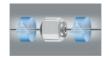
Все блоки имеют высоту 241 мм, что упрощает установку в условиях ограниченного пространства.


Низкий уровень шума

Оптимизированное воздухораспределение и конструкция трёхскоростного малошумного вентилятора обеспечивают комфортную среду.

Приток свежего воздуха

Возможна подача свежего воздуха в помещение через специально подготовленное отверстие в корпусе блока.


Система фильтрации

Для простоты очистки фильтр легко снимается и устанавливается.

Защитное покрытие дренажного поддона

Дренажный поддон V-образной формы имеет специальное антикоррозионное защитное покрытие.

DC-фанкойлы с инверторным приводом

ІБесщеточные двигатели вентилятора постоянного тока от ведущих мировых производителей Panasonic/Nedic/Welling.

Индивидуальные пульты

KJR-18B/E Опция

KJRP-86I/MFKS-E Опция

KJRP-86A/BMFNKD-E c Modbus Опция

ССМ30/ВКЕ-А Опция

До 64 фанкойлов могут быть подключены к центральным контроллерам Midea через модуль подключения FCU KIT.

Подключение к шлюзу Modbus через порт PQE.

Комплекты FCU KIT для подключения канальных фанкойлов к центральным пультам и системамдиспетчеризации:

2-трубный CE-FCUKZ-03 4-трубный CE-FCUKZ-04

Технические характеристики

2-трубный: 2-рядный

2 грубный, 2 рядный					воздуха		
ВНУТРЕННИ	1Й БЛОК		MKT2-V200	MKT2-V300	MKT2-V400	MKT2-V500	
	Производительность (выс./сред./низ.)	кВт	2.02/1.52/1.17	2.82/2.33/1.79	3.31/2.78/2.14	3.83/3.16/2.55	
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.37/0.28/0.22	0.51/0.41/0.32	0.59/0.50/0.38	0.68/0.56/0.46	
	Гидросопротивление (выс./сред./низ.)	кПа	6.3/3.6/2.2	14.0/10.5/7.3	19.4/14.8/9.6	23.7/17.1/11.9	
	Потребляемая мощность (выс./сред./низ.)	Вт	18/9/6	25/15/11	29/16/9	42/20/11	
Нагрев	Производительность (выс./сред./низ.)	кВт	2.57/1.89/1.47	3.56/2.80/2.08	4.19/3.42/2.49	4.84/3.90/3.01	
	Расход воды (выс./сред./низ.)	м³/ч	0.47/0.34/0.27	0.62/0.50/0.37	0.72/0.60/0.45	0.84/0.69/0.53	
	Гидросопротивление (выс./сред./низ.)	кПа	5.6/4.5/2.9	10.5/10.3/6.3	16.2/16.6/10.0	19.9/20.9/12.9	
	Потребляемая мощность (выс./сред./низ.)	Вт	19/9/7	25/15/11	32/17/9	45/22/12	
Статический н	напор	Па		12/30)/50*		
Электропитан	ие	В, Гц, Ф		220-24	0, 50, 1		
Рабочий ток		А	0.3	0.3	0.4	0.5	
Расход воздух	ка (выс./сред./низ.)	м³/ч	439/295/221	615/439/310	792/622/413	887/620/443	
Уровень шума	з (выс./сред./низ.)	дБ(А)	37.5/27.4/24.0	40.3/33.1/26.7	41.1/34.7/26.8	41.1/34.7/26.8	
Внутренний блок	Габариты (ШхВхГ)	ММ	741×241×522	841×241×522	941×241×522	941×241×522	
	Bec	KΓ	16.5	18.5	20.0	20.0	
Труспыс	Диаметр труб на вх./вых.	дюйм		RC:	3/4		
	Дренажная труба	дюйм		R3	5/4		

ВНУТРЕННИ	ІЙ БЛОК		MKT2-V600	MKT2-V800	MKT2-V1000	MKT2-V1200			
	Производительность (выс./сред./низ.)	кВт	4.78/4.01/3.09	6.7/5.49/4.45	7.92/6.62/5.15	9.83/8.5/6.46			
0	Расход воды (выс./сред./низ.)	м³/ч	0.85/0.69/0.54	1.19/0.96/0.80	1.43/1.17/0.91	1.74/1.42/1.12			
Охлаждение	Гидросопротивление (выс./сред./низ.)	кПа	14.2/9.8/6.1	15.1/10.9/7.8	23.2/16.4/10.9	50.3/30.4/21.7			
	Потребляемая мощность (выс./сред./низ.)	Вт	53/25/12	62/28/16	93/42/19	111/53/24			
Нагрев	Производительность (выс./сред./низ.)	кВт	6.25/5.17/4.03	8.39/6.64/5.2	9.92/7.94/5.86	12.58/10.24/7.57			
	Расход воды (выс./сред./низ.)	м³/ч	1.10/0.91/0.7	1.46/1.17/0.91	1.69/1.38/1.01	2.17/1.79/1.34			
	Гидросопротивление (выс./сред./низ.)	кПа	12.4/14.2/8.9	13.3/13.1/8.3	19.7/18.9/11.07	38.3/41.8/26.5			
	Потребляемая мощность (выс./сред./низ.)	Вт	58/27/13	66/30/16	100/44/19	118/55/24			
Статический н	іапор	Па		12/30	0/50*				
Электропитан	ие	В, Гц, Ф		220-240, 50, 1					
Рабочий ток		А	0.6	0.6	0.8	1			
Расход возду>	а (выс./сред./низ.)	м³/ч	1081/821/586	1492/1071/797	1824/1332/906	2327/1669/1135			
Уровень шума	а (выс./сред./низ.)	дБ(А)	46.1/38.9/29.9	47.7/39.4/31.1	50.2/43.0/33.0	50.9/44.0/33.8			
Внутренний блок	Габариты (ШхВхГ)	ММ	1161×241×522	1461×241×522	1566×241×522	1856×241×522			
	Bec	ΚΓ	22.2	31.4	32.5	37.5			
i pyonibic	Диаметр труб на вх./вых.	дюйм		RC	3/4				
	Дренажная труба	дюйм		R	3/4				

^{*} Статический напор можно установить с помощью переключателя на плате управления (12 Па установлено по умолчанию).

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.)/19°C (влажн. терм.) 2. Условия нагрева: температура воды на входе 45°C, температура воздуха на входе 20°C (сух. терм.)/15°C (влажн. терм.) 3. Уровень шума измерялся в безэховой камере.

Технические характеристики

2-трубный; 3-рядный

ВНУТРЕННИ	ій блок		MKT3-V200	MKT3-V300	MKT3-V400	MKT3-V500		
	Производительность (выс./сред./низ.)	кВт	2.35/1.72/1.32	3.12/2.72/2.1	3.99/3.26/2.5	4.46/3.59/2.83		
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.43/0.31/0.25	0.6/0.48/0.37	0.69/0.57/0.43	0.79/0.63/0.50		
	Гидросопротивление (выс./сред./низ.)	кПа	13.6/8.6/6.3	23.8/16.4/11.3	13.0/9.3/5.8	16.4/11.3/7.6		
	Потребляемая мощность (выс./сред./низ.)	Вт	17/9/6	20/12/7	26/15/9	39/19/11		
Нагрев	Производительность (выс./сред./низ.)	кВт	2.68/1.99/1.42	3.82/3.08/2.28	4.7/3.85/2.77	5.27/4.21/3.21		
	Расход воды (выс./сред./низ.)	м³/ч	0.49/0.35/0.26	0.67/0.54/0.41	0.82/0.67/0.50	0.92/0.73/0.57		
	Гидросопротивление (выс./сред./низ.)	кПа	12.6/7.6/4.9	25/17.6/11.3	13.0/10.5/6.2	18.4/12.4/8.1		
	Потребляемая мощность (выс./сред./низ.)	Вт	18/9/6	23/15/10	26/16/9	43/21/11		
Статический н	апор	Па		12/30)/50*			
Электропитан	ие	В, Гц, Ф	220-240, 50, 1					
Рабочий ток		Α	0.3	0.3	0.3	0.4		
Расход воздух	ка (выс./сред./низ.)	м³/ч	411/273/205	596/442/311	734/564/389	865/626/441		
Уровень шума	а (выс./сред./низ.)	дБ(А)	38.1/28.4/23.4	36.4/29.5/20.7	38.4/32.2/24.0	44.3/36.3/27.9		
Внутренний	Габариты (ШхВхГ)	ММ	741×241×522	841×241×522	941×241×522	941×241×522		
блок	Bec	ΚΓ	16.7	19.0	21.0	21.0		
рубные	Диаметр труб на вх./вых.	дюйм		RC:	3/4			
соединения	Дренажная труба	дюйм	R3/4					

ВНУТРЕННИ	ий блок		MKT3-V600	MKT3-V800	MKT3-V1000	MKT3-V1200
	Производительность (выс./сред./низ.)	кВт	5.85/4.82/3.78	8.02/6.36/5.08	8.96/7.37/5.66	10.79/8.86/6.79
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	1.05/0.85/0.65	1.42/1.11/0.89	1.59/1.29/0.98	1.93/1.57/1.20
	Гидросопротивление (выс./сред./низ.)	кПа	31.4/22.0/14.2	31.6/20.5/13.9	24.1/16.9/10.8	26.3/18.8/12.8
	Потребляемая мощность (выс./сред./низ.)	Вт	49/24/12	60/28/16	96/43/19	106/49/21
	Производительность (выс./сред./низ.)	кВт	6.62/5.38/4.0	9.15/7.08/5.58	10.74/8.55/6.35	12.62/10.15/7.47
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	1.15/0.94/0.71	1.59/1.26/0.98	1.88/1.51/1.13	2.23/1.78/1.31
	Гидросопротивление (выс./сред./низ.)	кПа	31.7/22.2/13.6	32.9/21.6/13.9	28.3/19.4/12.0	29.4/20.0/11.9
	Потребляемая мощность (выс./сред./низ.)	Вт	53/26/12	65/30/17	100/45/20	115/52/22
Статический н	напор	Па		12/30	D/50*	
Электропитан	ие	В, Гц, Ф		220-24	10, 50, 1	
Рабочий ток		А	0.5	0.6	0.9	1.0
Расход возду>	ка (выс./сред./низ.)	м ³ /ч	1022/760/544	1452/1038/781	1824/1332/906	2134/1581/1083
Уровень шума	а (выс./сред./низ.)	дБ(А)	46.1/39.0/30.3	44.9/36.1/27.7	47.8/40.7/30.7	48.9/41.8/31.7
Внутренний блок	Габариты (ШхВхГ)	ММ	1161×241×522	1461×241×522	1566×241×522	1856×241×522
	Bec	KΓ	23.7	33.0	34.7	39.2
Грубные соединения	Диаметр труб на вх./вых.	дюйм		RC	3/4	
	Дренажная труба	дюйм		R3	3/4	

воздуха

Фильтр в комплекте

2-трубный; 4-рядный

внутренны	ий блок		MKT4-V200	MKT4-V300	MKT4-V400	MKT4-V500		
	Производительность (выс./сред./низ.)	кВт	2.22/1.59/1.2	3.19/2.58/1.87	4.06/3.26/2.41	4.46/3.56/2.78		
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.40/0.30/0.23	0.57/0.47/0.34	0.72/0.59/0.43	0.80/0.63/0.50		
	Гидросопротивление (выс./сред./низ.)	кПа	2.4/1.5/1	5.2/3.5/2.4	8.4/5.9/3.5	11.6/8.1/5.6		
	Потребляемая мощность (выс./сред./низ.)	Вт	17/9/6	21/2/7	29/16/9	43/23/14		
Нагрев	Производительность (выс./сред./низ.)	кВт	2.81/2/1.54	3.88/3.09/2.35	4.33/3.54/2.6	5.44/4.23/3.23		
	Расход воды (выс./сред./низ.)	м³/ч	0.51/0.37/0.29	0.67/0.56/0.42	0.84/0.68/0.51	0.96/0.76/0.57		
	Гидросопротивление (выс./сред./низ.)	кПа	2/1.76/1.2	4.3/4.29/2.8	7.7/7/4.2	10.6/9.8/6.7		
	Потребляемая мощность (выс./сред./низ.)	Вт	43350	23/13/8	32/18/10	41/22/12		
Статический і	напор	Па		12/30	0/50*			
Электропитан	ние	В, Гц, Ф	220-240, 50, 1					
Рабочий ток		Α	0.3	0.3	0.4	0.4		
Расход возду	ха (выс./сред./низ.)	м³/ч	441/297/227	627/468/338	778/537/349	884/642/461		
Уровень шума	Уровень шума (выс./сред./низ.)		37.3/27.4/22.2	39.6/32.5/25.0	41.1/34.5/26.4	44.8/37.2/29.8		
Внутренний	Габариты (ШхВхГ)	MM	741×241×522	841×241×522	941×241×522	941×241×522		
блок	Bec	KΓ	17.8	20.0	21.9	21.9		
труоные	Диаметр труб на вх./вых.	дюйм		RC	3/4			
	Дренажная труба	дюйм		R	3/4			

¹ Условия охлаждения: температура воды на входе 7 °C, температура воды на выходе 12 °C, температура воздуха на входе 27 °C (сух. терм.)/19 °C (влажн. терм.) 2.9 словия нагрева: температура воды на входе 45 °C, температура воды на входе 40 °C, температура воздуха на входе 20 °C (сух. терм.)/15 °C (влажн. терм.) 3. Уровень шума измерялся в безэховой камере.

2-трубный; 4-рядный

внутренни	ІЙ БЛОК		MKT4-V600	MKT4-V800	MKT4-V1000	MKT4-V1200			
	Производительность (выс./сред./низ.)	кВт	5.87/4.78/3.68	6.65/5.04/3.61	7.98/6.19/4.37	9.76/7.81/5.72			
Охлаждение	Расход воды (выс./сред./низ.)	м ³ /ч	1.06/0.86/0.65	1.19/0.88/0.64	1.47/1.12/0.78	1.78/1.41/1.02			
	Гидросопротивление (выс./сред./низ.)	кПа	19.4/13.6/8.5	8.8/5.1/2.8	13.8/8.6/4.7	22.3/15.0/9.0			
	Потребляемая мощность (выс./сред./низ.)	Вт	51/25/12	61/27/16	93/42/18	109/50/22			
	Производительность (выс./сред./низ.)	кВт	6.47/5.18/3.91	8.36/6.32/4.77	9.89/7.79/5.67	11.76/9.32/6.76			
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	1.11/0.90/0.67	1.43/1.12/0.86	1.68/1.35/1.00	2.01/1.60/1.15			
	Гидросопротивление (выс./сред./низ.)	кПа	16.3/12.6/7.4	7.7/7.0/4.3	12.1/10.5/6.1	20.0/16.9/9.6			
	Потребляемая мощность (выс./сред./низ.)	Вт	56/27/13	66/30/16	102/46/20	119/55/24			
Статический н	апор	Па		12/30	0/50*				
Электропитан	ие	В, Гц, Ф		220-240, 50, 1					
Рабочий ток		А	0.5	0.6	0.9	1.0			
Расход воздух	а (выс./сред./низ.)	м³/ч	1056/793/575	1506/1084/822	1813/1341/932	2134/1617/1119			
Уровень шума (выс./сред./низ.)		дБ(А)	46.1/39.4/30.7	47.4/39.1/32.1	50.4/42.7/33.1	50.7/43.8/34.5			
Внутренний блок	Габариты (ШхВхГ)	ММ	1161×241×522	1461×241×522	1566×241×522	1856×241×522			
	Bec	КГ	25.0	34.8	36.4	41.9			
груоные	Диаметр труб на вх./вых.	дюйм		RC	3/4				
	Дренажная труба	дюйм		R3	3/4				

4-трубный; 3-рядный

1- 2 -	1-2 - 7 - 1- 11					воздуха			
ВНУТРЕННИ	ий бло к		MKT3-V200F	MKT3-V300F	MKT3-V400F	MKT3-V500F			
	Производительность (выс./сред./низ.)	кВт	1.4/1.1/0.8	2.2/1.7/1.5	2.5/2.0/1.5	3.0/2.4/1.9			
Охлаждение	Расход воды (выс.)	м ³ /ч	0.27	0.38	0.47	0.54			
	Гидросопротивление (выс.)	кПа	10.2	10.5	11.3	13.6			
Нагрев	Производительность (выс./сред./низ.)	кВт	2.1/1.7/1.4	3.0/2.6/2.1	3.7/3.2/2.5	4.4/3.6/3.0			
	Гидросопротивление (выс.)	кПа	8.9	9.1	10.1	11.7			
Статический напор		Па		12/30	0/50*				
Электропитан	ие	В, Гц, Ф		220-24	0, 50, 1	50, 1			
Потребляемая	я мощность	Вт	16	21	28	36			
Расход воздух	ка (выс./сред./низ.)	м ³ /ч	320/210/140	450/340/280	530/390/260	690/470/370			
/ровень шума	а (выс./сред./низ.)	дБ(А)	35/25/23	36/29/23	38/32/24	43/35/27			
Знутренний	Габариты (ШхВхГ)	ММ	741×241×522	841×241×522	941×241×522	941×241×522			
блок	Bec	KГ	17.2	19.5	21.5	21.5			
груоные	Диаметр труб на вх./вых.	дюйм		RC	3/4				
	Дренажная труба	дюйм		R3	3/4				

внутренни	ІЙ БЛОК		MKT3-V600F	MKT3-V800F	MKT3-V100F0	MKT3-V1200F		
	Производительность (выс./сред./низ.)	кВт	4.2/3.5/2.5	5.3/4.1/3.1	6.7/5.4/3.9	8.2/6.5/4.6		
Охлаждение	Расход воды (выс.)	м ³ /ч	0.73	0.93	1.18	1.4		
	Гидросопротивление (выс.)	кПа	15.3	12.8	21.6	34.9		
Нагрев	Производительность (выс./сред./низ.)	кВт	5.7/4.8/3.4	6.8/5.5/4.6	8.2/6.9/5.2	10.1/8.6/6.8		
	Гидросопротивление (выс.)	кПа	12.7	12.0	15.5	25.7		
Статический напор		Па		12/3	0/50*			
Электропитан	ие	В, Гц, Ф	220-240, 50, 1					
Тотребляемая	мощность	Вт	45	57	87	95		
Расход воздух	а (выс./сред./низ.)	м ³ /ч	900/670/440	1240/840/670	1610/1160/790	1850/1400/970		
/ровень шума	(выс./сред./низ.)	дБ(А)	46/39/30	46/38/30	48/41/31	47/40/30		
Внутренний	Габариты (ШхВхГ)	ММ	1161×241×522	1461×241×522	1566×241×522	1856×241×522		
блок	Bec	KF	24.2	33.5	35.2	39.7		
i pyonbic	Диаметр труб на вх./вых.	дюйм		RC	3/4			
	Дренажная труба	дюйм	R3/4					

^{*} Статический напор можно установить с помощью переключателя на плате управления (12 Па установлено по умолчанию).

^{1.} Условия охлаждения: температура воды на входе 7 °C, температура воды на выходе 12 °C, температура воздуха на входе 27 °C (сух. терм.)/19 °C (влажн. терм.) 2. Условия нагрева: температура воды на входе 45 °C, температура воздуха на входе 20 °C (сух. терм.)/15 °C (влажн. терм.) 3. Уровень шума измерялся в безэховой камере.

Настенный тип

MKG

MKG_D

Автоматическое качаение жалюзи

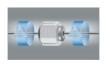
Автоматическое качание горизонтальных жалюзи обеспечивает равномерное распределение холодного или теплого воздуха по максимальной площади помещения.

Простота эксплуатации

Панель легко снимается, что обеспечивает простое обслуживание фильтра.

Встроенный трехходовой клапан

Настенные фанкойлы поставляются с уже встроенным 3-ходовым клапаном, что значительно снижает затраты и время на монтаж.


Современный дизайн

Лаконичный дизайн панелей блоков позволяет с легкостью подобрать решение к любой интерьерной и технической задаче. Фанкойлы поставляются в двух вариантах: с классической белой панелью и дизайнерской..

Низкий уровень шума

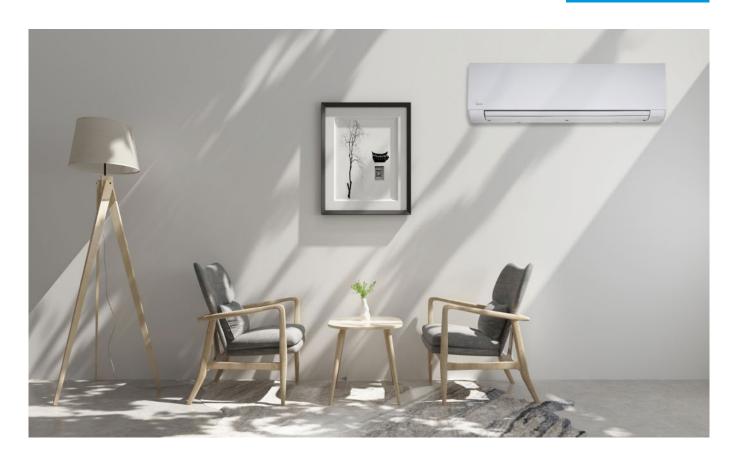
Трехскоростной малошумный вентилятор обеспечивает комфортную среду в помещении.

DC-фанкойлы с инверторным приводом

Бесщеточные двигатели вентилятора постоянного тока от ведущих мировых производителей Panasonic/Nedic/Welling.

Пульты индивидуальные

RO5/BGE В комплекте



KJR-29B/BK-E Опция

ССМ30/ВКЕ-А Опция

До 64 фанкойлов могут быть подключены к центральным контроллерам Midea через индивидуальный порт XYE. Подключение к шлюзу Modbus через порт PQE.

Технические характеристики

2-трубный

ВНУТРЕННИ	ий блок		MKG-250-C(D)	MKG-300-C(D)	MKG-400-C(D)	MKG-500-C(D)	MKG-600-C(D)
	Производительность (выс./сред./низ.)	кВт	2.7/2.59/2.39	2.91/2.54/2.19	3.81/3.3/2.88	4.47/3.98/3.48	4.87/4.26/3.79
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.48/0.46/0.42	0.51/0.45/0.38	0.67/0.57/0.51	0.77/0.68/0.61	0.85/0.72/0.65
Охлаждение	Гидросопротивление (выс./сред./низ.)	кПа	31.6/28.6/25.4	37.2/29.7/23.7	56.8/41.2/33.0	41.2/33.5/27.1	50.7/39.5/33.7
	Потребляемая мощность (выс./сред./низ.)	Вт	13/11/9	15/11/9	34/22/15	26/18/13	38/26/18
	Производительность (выс./сред./низ.)	кВт	2.94/2.8/2.58	3.23/2.77/2.42	4.3/3.65/3.09	4.84/4.23/3.62	5.26/4.68/3.96
	Расход воды (выс./сред./низ.)	м³/ч	0.51/0.49/0.46	0.56/0.49/0.42	0.73/0.64/0.56	0.84/0.73/0.64	0.89/0.80/0.68
Нагрев	Гидросопротивление (выс./сред./низ.)	кПа	32.7/34.9/30.2	34.1/31.5/25.1	51.9/47.5/35.7	36.8/33.8/26.3	47.1/42.8/33.0
	Потребляемая мощность (выс./сред./низ.)	Вт	11/11/9	14/10/8	31/20/14	22/16/12	33/23/16
Электропитан	ие	В, Гц, Ф			220-240, 50, 1		
Рабочий ток		Α	492/454/400	585/485/413	825/689/590	862/741/634	979/849/717
Расход воздух	ка (выс./сред./низ.)	м³/ч	32/30/27	32/27/23	45/39/35	38/34/30	44/40/35
Уровень шума	а (выс./сред./низ.)	дБ(А)	915×290×233	915×290×233	915×290×233	1072×315×237	1072×315×237
Внутренний	Габариты (ШxВxГ)	MM	12.7	12.7	12.7	15.1	14.9
блок	Bec	КГ	25	34.8	36.4	36.4	41.9
Трубные	Диаметр труб на вх./вых.	дюйм			RC3/4		
соединения	Дренажная труба	MM			НД 20		
ИК-пульт	В комплекте				R05/BGE		

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.) 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.) 3. Уровень шума измерялся в безэховой камере.

Напольно-потолочный тип

MKH

Компактный размер

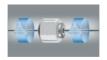
Глубина блоков до 211 мм обеспечивает простоту монтажа в условиях ограниченного пространства

Низкий уровень шума

Оптимизированное воздухораспределение и конструкция трёхскоростного малошумного вентилятора обеспечивают комфортную среду.

Два варианта установки

Блок может быть размещен под потолком и у пола.


Удобство монтажа

Трубопровод может быть подведен как справа, так и слева.

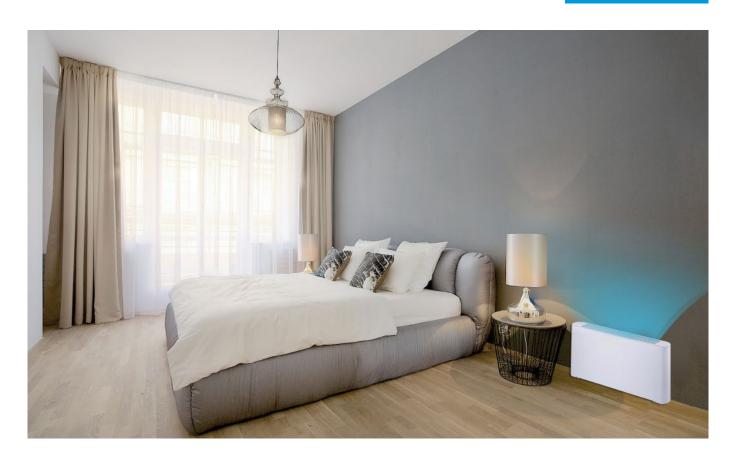
Функциональное управление

В корпусе фанкойлов серий H1 и H2 имеется специальная ниша для размещения пульта управления KJRP-75A/BK-E (опция).

DC-фанкойлы с инверторным приводом

Бесщеточные двигатели вентилятора постоянного тока от ведущих мировых производителей Panasonic/Nedic/Welling.

Индивидуальный пульт



KJRP-75A/BK-E Опция

ССМ30/ВКЕ-А Опция

До 64 фанкойлов могут быть подключены к центральным контроллерам Midea через индивидуальный порт XYE.

Подключение к шлюзу Modbus через порт PQE.

Технические характеристики

2-трубный; 3-рядный

ВНУТРЕННИ	1Й БЛОК		MKH1-V150-R3	MKH1-V250-R3	MKH1-V350-R3
	Производительность (выс./сред./низ.)	кВт	1.44/1.01/0.88	2.23/1.84/1.13	3.41/2.81/2.16
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.25/0.17/0.15	0.38/0.32/0.19	0.58/0.48/0.37
	Гидросопротивление (выс./сред./низ.)	кПа	13.4/7.9/6.0	12.7/9.5/4.4	33.4/24.0/15.0
	Производительность (выс./сред./низ.)	кВт	1.50/1.02/0.88	2.47/2.00/1.27	3.70/3.02/2.29
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.26/0.17/0.15	0.42/0.34/0.22	0.63/0.52/0.39
	Гидросопротивление (выс./сред./низ.)	кПа	14.5/7.3/5.6	13.6/9.8/4.3	34.2/23.8/14.5
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	я мощность (выс./сред./низ.)	Вт	13.4/7.9/6.0	20/13/10	27/18/11
Рабочий ток		А	0.2	0.21	0.26
Расход возду	ка (выс./сред./низ.)	м³/ч	245/160/135	380/245/140	580/435/310
Уровень шума	а (выс./сред./низ.)	дБ(А)	34/23/21	30/22/14	39/32/24
Внутренний	Габариты (ШхВхГ)	ММ	790×495×211	1020×495×211	1240×495×211
блок	Bec	ΚΓ	18	21.5	25.5
Трубные соединения	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	MM		НД 18.5	

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.)/19°C (влажн. терм.)
2. Условия нагрева: температура воды на входе 45°C, температура воды на выходе 40°C, температура воздуха на входе 20°C (сух. терм.)/15°C (влажн. терм.)
3. Уровень шума измерялся в безэховой камере.

Технические характеристики

2-трубный; 3-рядный

ЗНУТРЕНН <i>И</i>	ІЙ БЛОК		MKH1-V500-R3	MKH1-V700-R3	MKH1-V800-R3
	Производительность (выс./сред./низ.)	кВт	4.25/3.43/2.67	4.94/3.94/2.77	6.21/5.17/3.86
Эхлаждение	Расход воды (выс./сред./низ.)	м ³ /ч	0.73/0.59/0.46	0.85/0.68/0.47	1.06/0.89/0.66
	Гидросопротивление (выс./сред./низ.)	кПа	53.5/35.8/24.1	44.7/29.5/15.6	37.3/28.5/16.4
	Производительность (выс./сред./низ.)	кВт	4.64/3.65/2.77	5.29/4.20/2.96	6.80/5.46/3.98
Нагрев	Расход воды (выс./сред./низ.)	м ³ /ч	0.80/0.63/0.47	0.91/0.72/0.51	1.17/0.94/0.68
	Гидросопротивление (выс./сред./низ.)	кПа	53.6/36.4/22.0	49.0/33.2/17.0	39.7/27.0/15.4
электропитан	ие	В, Гц, Ф		220-240, 50, 1	
1отребляемая	мощность (выс./сред./низ.)	Вт	50/26/15	98/45/18	105/50/23
абочий ток		А	0.49	0.85	0.9
асход воздух	а (выс./сред./низ.)	м ³ /ч	780/550/380	1050/750/450	1150/850/570
/ровень шума	(выс./сред./низ.)	дБ(А)	46/39/30	52/43/32	53/46/36
Внутренний	Габариты (ШхВхГ)	ММ	1240×495×211	1360×495×211	1360×591×211
блок	Bec	KГ	25.5	28.5	32.5
труоные	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	ММ		НД 18.5	

2-трубный; 4-рядный

ВНУТРЕННИ	ій блок		MKH1-V150-R4	MKH1-V250-R4	MKH1-V350-R4
	Производительность (выс./сред./низ.)	кВт	1.87/1.59/1.16	2.55/1.90/1.26	3.80/3.11/2.36
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.32/0.27/0.2	0.44/0.33/0.22	0.65/0.53/0.40
	Гидросопротивление (выс./сред./низ.)	кПа	26.1/20.1/11.8	23.2/13.5/6.6	36.5/25.3/15.0
	Производительность (выс./сред./низ.)	кВт	1.97/1.68/1.20	2.63/1.92/1.27	3.90/3.13/2.43
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.34/0.29/0.21	0.45/0.33/0.22	0.67/0.54/0.40
	Гидросопротивление (выс./сред./низ.)	кПа	24.0/18.8/9.9	21.8/12.2/5.9	35.6/24.7/13.9
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	20/16/11	21/12/8	30/18/12
Рабочий ток		А	0.21	0.22	0.28
Расход воздух	а (выс./сред./низ.)	м³/ч	245/180/130	380/240/110	580/435/300
Уровень шума	ı (выс./сред./низ.)	дБ(А)	39/33/26	33/26/17	39/32/24
Знутренний	Габариты (ШхВхГ)	MM	790×495×211	1020×495×211	1240×495×211
блок	Bec	КГ	18.5	22	26.5
i pyonibic	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	ММ		НД 18.5	

внутренни	ий блок		MKH1-V500-R4	MKH1-V700-R4	MKH1-V800-R4
	Производительность (выс./сред./низ.)	кВт	4.73/3.82/2.85	5.60/4.58/3.19	7.30/5.88/4.28
Охлаждение	Расход воды (выс./сред./низ.)	м ³ /ч	0.81/0.65/0.49	0.96/0.79/0.55	1.25/1.01/0.73
	Гидросопротивление (выс./сред./низ.)	кПа	53.0/35.9/21.2	28.9/19.2/10.1	63.0/40.8/22.5
	Производительность (выс./сред./низ.)	кВт	5.12/3.98/2.96	6.22/4.95/3.37	7.70/6.02/4.29
Нагрев	Расход воды (выс./сред./низ.)	M ³ /4	0.88/0.68/0.51	1.07/0.85/0.58	1.32/1.03/0.74
	Гидросопротивление (выс./сред./низ.)	кПа	52.0/35.6/20.0	33.2/22.5/11.0	55.0/36.4/19.2
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	я мощность (выс./сред./низ.)	Вт	52/28/15	99/50/20	105/50/23
Рабочий ток		А	0.51	0.85	0.9
Расход возду	ка (выс./сред./низ.)	м ³ /ч	780/560/390	1050/770/460	1150/860/600
Уровень шума	а (выс./сред./низ.)	дБ(А)	46/39/30	52/42/33	53/46/36
Внутренний	Габариты (ШхВхГ)	ММ	1240×495×211	1360×495×211	1360×591×211
блок	Bec	KГ	26.5	29.5	34.5
Трубные соединения	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	ММ		НД 18.5	

^{1.} Выс.: высокие обороты вентилятора; сред.: средние обороты вентилятора; низк.: низкие обороты вентилятора.
2. Условия охлаждения: температура воды на входе 7 °C, температура воды на входе 27 °C (сух. терм.)/19 °C (влажн. терм.)
3. Условия нагрева: температура воды на входе 45 °C, температура воды на выходе 40 °C, температура воздуха на входе 20 °C (сух. терм.)/15 °C (влажн. терм.)
4. Уровень шума измерялся в безэховой камере.

2-трубный; 3-рядный

ВНУТРЕННИ	й блок		MKH2-V150-R3	MKH2-V250-R3	MKH2-V350-R3
	Производительность (выс./сред./низ.)	кВт	1.50/1.06/0.92	2.35/1.94/1.19	3.50/2.89/2.22
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.26/0.18/0.16	0.40/0.34/0.21	0.60/0.50/0.38
	Гидросопротивление (выс./сред./низ.)	кПа	13.9/8.2/6.2	13.3/10.0/4.6	34.1/24.6/15.4
	Производительность (выс./сред./низ.)	кВт	1.57/1.07/0.92	2.60/2.11/1.34	3.80/3.10/2.35
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.27/0.19/0.16	0.45/0.37/0.23	0.65/0.53/0.40
	Гидросопротивление (выс./сред./низ.)	кПа	15.1/7.6/5.8	14.3/10.3/4.5	35.1/24.4/14.8
Электропитание		В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	15.9.8	17.12.7	26/17/10
Рабочий ток		А	0.18	0.20	0.26
Расход воздух	а (выс./сред./низ.)	м³/ч	255/170/150	400/315/190	595/470/340
Уровень шума	(выс./сред./низ.)	дБ(А)	34/24/21	29/24/18	38/32/23
Знутренний	Габариты (ШхВхГ)	ММ	790×495×200	1020×495×200	1240×495×200
блок	Bec	ΚΓ	18.0	21.5	25.5
Трубные соединения	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	ММ		НД 18.5	

внутренни	ІЙ БЛОК		MKH2-V500-R3	MKH2-V700-R3	MKH2-V800-R3
	Производительность (выс./сред./низ.)	кВт	4.30/3.48/2.71	5.60/4.47/3.14	7.35/6.12/4.57
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.74/0.60/0.47	0.96/0.77/0.54	1.27/1.05/0.79
	Гидросопротивление (выс./сред./низ.)	кПа	54.2/36.2/22.8	50.7/33.4/17.7	44.1/33.7/19.4
	Производительность (выс./сред./низ.)	кВт	4.70/3.70/2.81	6.00/4.77/3.36	8.05/6.46/4.71
Нагрев	Расход воды (выс./сред./низ.)	м ³ /ч	0.81/0.64/0.48	1.04/0.83/0.59	1.39/1.12/0.82
	Гидросопротивление (выс./сред./низ.)	кПа	54.3/36.9/22.3	55.5/37.7/19.3	46.9/31.9/18.2
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	50/25/14	96/44/17	113/53/22
Рабочий ток		А	0.49	0.85	0.95
Расход возду	а (выс./сред./низ.)	м³/ч	790/580/410	1190/855/505	1360/1015/685
Уровень шума	(выс./сред./низ.)	дБ(А)	46/38/30	50/42/31	51/44/33
Внутренний	Габариты (ШхВхГ)	ММ	1240×495×200	1360×495×200	1360×591×200
блок	Bec	KГ	25.5	28.5	32.5
Трубные	Диаметр труб на вх./вых.	дюйм		G3/4	
соединения	Дренажная труба	MM		НД 18.5	

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.)/19°C (влажн. терм.) 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.)/15°C (влажн. терм.) 3. Уровень шума измерялся в безэховой камере.

2-трубный; 4-рядный

ВНУТРЕННИ	Й БЛОК		MKH2-V150-R4	MKH2-V250-R4	MKH2-V350-R4
	Производительность (выс./сред./низ.)	кВт	1.95/1.66/1.21	2.85/2.13/1.41	3.90/3.20/2.43
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.33/0.28/0.21	0.49/0.37/0.24	0.67/0.55/0.42
	Гидросопротивление (выс./сред./низ.)	кПа	27.2/20.9/12.2	26.0/15.1/7.4	37.4/25.9/15.4
	Производительность (выс./сред./низ.)	кВт	2.05/1.75/1.25	2.95/2.15/1.42	4.00/3.22/2.50
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.35/0.30/0.22	0.51/0.37/0.24	0.70/0.56/0.43
	Гидросопротивление (выс./сред./низ.)	кПа	25.3/19.7/10.3	24.4/13.7/6.6	36.5/25.3/14.2
Электропитание		В, Гц, Ф		220-240, 50, 1	
	мощность (выс./сред./низ.)	Вт	20/14/9	20/11/8	29/17/11
абочий ток		А	0.21	0.22	0.28
асход воздух	а (выс./сред./низ.)	м³/ч	255/210/150	425/300/190	595/450/310
/ровень шума	(выс./сред./низ.)	дБ(А)	53/47/39	32/23/19	40/34/30
 Внутренний	Габариты (ШхВхГ)	ММ	790×495×200	1020×495×200	1240×495×200
 блок	Bec	КГ	18.5	22.0	26.5
Трубные	Диаметр труб на вх./вых.	дюйм		G3/4	
соединения	Дренажная труба	ММ		НД 18.5	

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.)/19°C (влажн. терм.)
2. Условия нагрева: температура воды на входе 45°C, температура воды на выходе 40°C, температура воздуха на входе 20°C (сух. терм.)/15°C (влажн. терм.)
3. Уровень шума измерялся в безэховой камере.

Технические характеристики

2-трубный; 4-рядный

ВНУТРЕНН <i>И</i>	ІЙ БЛОК		MKH2-V500-R4	MKH2-V700-R4	MKH2-V800-R4
	Производительность (выс./сред./низ.)	кВт	4.85/3.92/2.93	6.35/5.19/3.62	8.25/6.65/4.84
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.83/0.67/0.51	1.09/0.90/0.63	1.43/1.14/0.83
	Гидросопротивление (выс./сред./низ.)	кПа	54.3/36.8/21.8	32.8/21.8/11.4	71.4/46.2/25.4
	Производительность (выс./сред./низ.)	кВт	5.25/4.09/3.04	7.05/5.61/3.83	8.70/6.81/4.85
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.91/0.71/0.53	1.22/0.98/0.67	1.51/1.18/0.83
	Гидросопротивление (выс./сред./низ.)	кПа	53.4/36.5/20.5	37.6/25.5/12.5	62.6/41.1/21.7
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Тотребляемая	и мощность (выс./сред./низ.)	Вт	52/28/15	92/46/19	102/49/22
Рабочий ток		А	0.51	0.95	0.87
асход воздух	ка (выс./сред./низ.)	м ³ /ч	800/600/420	1190/875/530	1300/980/680
/ровень шума	ı (выс./сред./низ.)	дБ(А)	45/39/30	50/43/31	50/43/33
Внутренний	Габариты (ШхВхГ)	ММ	1240×495×200	1360×495×200	1360×591×200
блок	Bec	ΚΓ	26.5	29.5	34.5
Трубные соединения	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	ММ		НД 18.5	

^{1.} Условия охлаждения: температура воды на входе 7 °C, температура воды на выходе 12 °C, температура воздуха на входе 27 °C (сух. терм.)/19 °C (влажн. терм.) 2. Условия нагрева: температура воды на входе 45 °C, температура воздуха на входе 20 °C (сух. терм.)/15 °C (влажн. терм.) 3. Уровень шума измерялся в безэховой камере.

2-трубный; 3-рядный

ВНУТРЕННИ	ій блок		MKH3-V150-R3	MKH3-V250-R3	MKH3-V350-R3
	Производительность (выс./сред./низ.)	кВт	1.50/1.06/0.92	2.35/1.94/1.19	3.50/2.89/2.22
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.26/0.18/0.16	0.40/0.34/0.21	0.60/0.50/0.38
	Гидросопротивление (выс./сред./низ.)	кПа	13.9/8.2/6.2	27.2/20.9/12.2	34.1/24.6/15.4
	Производительность (выс./сред./низ.)	кВт	1.57/1.07/0.92	2.60/2.11/1.34	3.80/3.10/2.35
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.27/0.19/0.16	0.45/0.37/0.23	0.65/0.53/0.40
	Гидросопротивление (выс./сред./низ.)	кПа	15.1/7.6/5.8	14.3/10.33/4.5	35.1/24.4/14.8
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	15/9/8	17/12/7	26/17/10
Рабочий ток		Α	0.18	0.20	0.26
Расход воздух	а (выс./сред./низ.)	м³/ч	255/170/150	400/315/190	595/470/340
Уровень шума	(выс./сред./низ.)	дБ(А)	34/24/21	29/24/18	38/32/23
Внутренний	Габариты (ШхВхГ)	ММ	637×455×200	867×455×200	1087×455×200
блок	Bec	ΚΓ	11.8	13.9	17.3
Трубные соединения	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	MM		НД 18.5	

ВНУТРЕННИ	ій блок		MKH3-V500-R3	MKH3-V700-R3	MKH3-V800-R3
	Производительность (выс./сред./низ.)	кВт	3.50/2.89/2.22	5.60/4.47/3.14	7.35/6.12/4.57
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.60/0.50/0.38	0.96/0.77/0.54	1.27/1.05/0.79
	Гидросопротивление (выс./сред./низ.)	кПа	34.1/24.6/15.4	50.7/33.4/17.7	44.1/33.7/19.4
	Производительность (выс./сред./низ.)	кВт	3.80/3.10/2.35	6.00/4.77/3.36	8.10/6.50/4.70
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.65/0.53/0.40	1.04/0.83/0.59	1.39/1.12/0.82
	Гидросопротивление (выс./сред./низ.)	кПа	35.1/24.4/14.8	55.5/37.7/19.3	46.9/31.9/18.2
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	50/25/14	96/44/17	113/53/22
Рабочий ток		А	0.49	0.85	0.95
Расход воздух	а (выс./сред./низ.)	м³/ч	790/580/410	1190/855/505	1360/1015/685
Уровень шума	(выс./сред./низ.)	дБ(А)	46/38/30	50/42/31	51/44/33
Внутренний	Габариты (ШхВхГ)	MM	1087×455×200	1207×455×200	1207×455×200
блок	Bec	KΓ	17.3	19.6	23.1
Трубные	Диаметр труб на вх./вых.	дюйм		G3/4	
соединения	Дренажная труба	MM		НД 18.5	

2-трубный; 4-рядный

ВНУТРЕННИ	й блок		MKH3-V150-R4	MKH3-V250-R4	MKH3-V350-R4
	Производительность (выс./сред./низ.)	кВт	1.95/1.66/1.21	2.85/2.13/1.41	3.90/3.20/2.43
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.33/0.28/0.21	0.49/0.37/0.24	0.67/0.55/0.42
	Гидросопротивление (выс./сред./низ.)	кПа	27.2/20.88/12.2	26/15.06/7.41	37.4/25.91/15.37
	Производительность (выс./сред./низ.)	кВт	2.05/1.75/1.25	2.95/2.15/1.42	4.00/3.22/2.50
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.35/0.30/0.22	0.51/0.37/0.24	0.70/0.56/0.43
	Гидросопротивление (выс./сред./низ.)	кПа	25.3/19.65/10.25	24.4/13.65/6.64	36.5/25.34/14.22
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	20/14/9	20/11/8	29/17/11
Рабочий ток		А	0.2	0.22	0.49
Расход возду	а (выс./сред./низ.)	м³/ч	255/210/150	425/300/190	595/450/310
/ровень шума	(выс./сред./низ.)	дБ(А)	39/33/25	32/23/19	40/34/30
Внутренний блок	Габариты (ШхВхГ)	ММ	637×455×200	867×455×200	1087×455×200
	Bec	КГ	12.1	14.8	18.2
Трубные соединения	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	ММ		НД 18.5	

внутренни	IЙ БЛОК		MKH3-V500-R4	MKH3-V700-R4	MKH3-V800-R4
	Производительность (выс./сред./низ.)	кВт	4.85/3.92/2.93	5.60/4.47/3.14	8.25/6.65/4.84
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.83/0.67/0.51	0.96/0.77/0.54	1.43/1.14/0.83
	Гидросопротивление (выс./сред./низ.)	кПа	54.3/36.81/21.77	50.7/33.38/17.73	71.4/46.2/25.4
	Производительность (выс./сред./низ.)	кВт	5.25/4.09/3.04	6.00/4.77/3.36	8.70/6.81/4.85
Нагрев	Расход воды (выс./сред./низ.)	м ³ /ч	0.91/0.71/0.53	1.04/0.83/0.59	1.51/1.18/0.83
	Гидросопротивление (выс./сред./низ.)	кПа	53.4/36.54/20.47	55.5/37.66/19.27	62.6/41.1/21.7
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	52/28/15	92/46/19	102/49/22
Рабочий ток		Α	0.51	0.79	0.87
Расход воздух	а (выс./сред./низ.)	м ³ /ч	800/600/420	1190/875/530	1300/980/680
Уровень шума	(выс./сред./низ.)	дБ(А)	45/39/30	50/43/31	50/43/33
Внутренний блок	Габариты (ШхВхГ)	ММ	1087×455×200	1207×455×200	1207×200×455
	Bec	ΚΓ	18.2	20.8	24.3
Трубные соединения	Диаметр труб на вх./вых.	дюйм		G3/4	
	Дренажная труба	ММ		НД 18.5	

^{1.} Условия охлаждения: температура воды на входе 7 °C, температура воды на выходе 12 °C, температура воздуха на входе 27 °C (сух. терм.)/19 °C (влажн. терм.) 2. Условия нагрева: температура воды на входе 65 °C, температура воздуха на входе 20 °C (сух. терм.) 3. Уровень шума измерялся в реверберационной камере.

4-трубный; 4-рядный

ВНУТРЕННИ	ій блок		MKH1-V150F-R4	MKH1-V250F-R4	MKH1-V350F-R4	
	Производительность (выс./сред./низ.)	кВт	1.63/1.38/0.91	2.41/1.73/0.99	3.70/3.10/2.26	
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.279/0.24/0.16	0.41/0.30/0.17	0.63/0.53/0.38	
	Гидросопротивление (выс./сред./низ.)	кПа	17.5/13.2/7.2	15.2/8.7/3.1	38.2/27.6/16.5	
	Производительность (выс./сред./низ.)	кВт	1.35/1.18/0.91	2.06/1.45/1.02	2.81/2.43/1.95	
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.12/0.10/0.08	0.18/0.13/0.09	0.24/0.21/0.17	
	Гидросопротивление (выс./сред./низ.)	кПа	10.3/8.2/5.3	25.2/15.0/8.5	54.0/41.9/28.5	
Электропитан	ие	В, Гц, Ф		220-240, 50, 1		
Потребляемая	мощность (выс./сред./низ.)	Вт	20/16/11	21/12/8	30/18/12	
Рабочий ток		А	0.21	0.22	0.28	
Расход воздух	а (выс./сред./низ.)	м ³ /ч	245/180/130	380/240/110	580/430/300	
Уровень шума	(выс./сред./низ.)	дБ(А)	39/33/26	33/26/17	39/32/24	
Внутренний блок	Габариты (ШхВхГ)	ММ	790×495×211	1020×495×211	1240×495×211	
	Bec	ΚΓ	19.0	22.5	27.0	
Трубные	Диаметр труб на вх./вых.	дюйм	холод	ная вода RC3/4; горячая вода:	RC1/2	
соединения	Дренажная труба	ММ	НД 18.5			

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.)/19°C (влажн. терм.)
2. Условия нагрева: температура воды на входе 65°C, температура воды на выходе 55°C, температура воздуха на входе 20°C (сух. терм.)
3. Уровень шума измерялся в реверберационной камере.

Технические характеристики

4- трубный; 4-рядный

ВНУТРЕННИ	ій блок		MKH1-V500F-R4	MKH1-V700F-R4	MKH1-V800F-R4
	Производительность (выс./сред./низ.)	кВт	4.49/3.66/2.76	5.34/4.41/3.02	6.77/5.48/4.02
Охлаждение	Расход воды (выс./сред./низ.)	M ³ /4	0.77/0.63/0.47	0.92/0.76/0.52	1.16/0.94/0.69
	Гидросопротивление (выс./сред./низ.)	кПа	54.8/38.1/23.2	47.4/32.6/16.8	42.5/28.8/16.2
	Производительность (выс./сред./низ.)	кВт	3.27/2.81/2.30	4.10/3.50/2.70	6.60/5.70/4.60
Нагрев	Расход воды (выс./сред./низ.)	M ³ /4	0.28/0.24/0.20	0.35/0.3/0.23	0.57/0.49/0.40
	Гидросопротивление (выс./сред./низ.)	кПа	67.8/53.3/37.3	116.8/91.9/56.2	63.4/49.7/33.1
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	52/28/15	99/50/20	105/50/23
Рабочий ток		Α	0.51	0.85	0.9
Расход воздух	а (выс./сред./низ.)	м³/ч	780/560/390	1050/770/460	1150/860/600
Уровень шума	(выс./сред./низ.)	дБ(А)	46/39/30	52/42/33	53/46/36
Знутренний	Габариты (ШхВхГ)	ММ	1240×495×211	1360×495×211	1360×591×211
блок	Bec	КГ	27.0	30.0	35.0
Трубные соединения	Диаметр труб на вх./вых.	дюйм	холод	цная вода RC3/4; горячая вода: F	RC1/2
	Дренажная труба	MM		НД 18.5	

^{1.} Условия охлаждения: температура воды на входе 7 °C, температура воды на выходе 12 °C, температура воздуха на входе 27 °C (сух. терм.)/19 °C (влажн. терм.) 2. Условия нагрева: температура воды на входе 65 °C, температура воздуха на входе 20 °C (сух. терм.) 3. Уровень шума измерялся в реверберационной камере.

4- трубный; 4-рядный

ВНУТРЕННИ	й блок		MKH2-V150F-R4	MKH2-V250F-R4	MKH2-V350F-R4
	Производительность (выс./сред./низ.)	кВт	1.70/1.44/0.95	2.70/1.94/1.10	3.80/3.18/2.32
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.29/0.25/0.16	0.46/0.33/0.19	0.65/0.55/0.40
	Гидросопротивление (выс./сред./низ.)	кПа	18.2/13.7/7.5	17.0/9.7/3.5	39.7/28.5/16.9
	Производительность (выс./сред./низ.)	кВт	1.40/1.23/0.95	2.30/1.78/1.22	2.88/2.49/2.00
Нагрев	Расход воды (выс./сред./низ.)	м³/ч	0.12/0.11/0.08	0.20/0.15/0.10	0.25/0.21/0.17
	Гидросопротивление (выс./сред./низ.)	кПа	10.7/8.5/5.5	28.2/18.5/10.1	55.4/43.0/29.2
Электропитан	ие	В, Гц, Ф		220-240, 50, 1	
Потребляемая	мощность (выс./сред./низ.)	Вт	20/14/9	20/11/8	29/17/11
Рабочий ток		А	0.21	0.22	0.28
Расход воздух	а (выс./сред./низ.)	м³/ч	255/206/134	425/280/158	595/461/324
Уровень шума	(выс./сред./низ.)	дБ(А)	39/33/25	46/37/29	52/45/36
Внутренний	Габариты (ШхВхГ)	ММ	637×495×200	867×495×200	1087×495×200
блок	Bec	ΚΓ	12.6	15.3	18.7
Трубные соединения	Диаметр труб на вх./вых.	дюйм	холо	дная вода RC3/4; горячая вода:	RC1/2
	Дренажная труба	MM		НД 18.5	

ВНУТРЕННИ	ій блок		MKH2-V500F-R4	MKH2-V700F-R4	MKH2-V800F-R4
Охлаждение	Производительность (выс./сред./низ.)	кВт	4.60/3.75/2.83	6.05/5.00/3.43	7.65/6.19/4.54
	Расход воды (выс./сред./низ.)	м³/ч	0.79/0.64/0.49	1.04/0.86/0.59	1.31/1.06/0.78
	Гидросопротивление (выс./сред./низ.)	кПа	56.2/39.1/23.8	53.7/37.0/19.1	48.1/32.6/18.3
Нагрев	Производительность (выс./сред./низ.)	кВт	3.35/2.88/2.36	4.60/3.95/3.02	7.50/6.44/5.22
	Расход воды (выс./сред./низ.)	м³/ч	0.29/0.25/0.20	0.39/0.34/0.26	0.64/0.55/0.45
	Гидросопротивление (выс./сред./низ.)	кПа	69.6/54.7/38.2	132.3/104.2/63.7	71.6/56.2/37.4
Электропитание		В, Гц, Ф		220-240, 50, 1	
Потребляемая мощность (выс./сред./низ.)		Вт	52/28/15	92/46/19	102/49/22
Рабочий ток		А	0.51	0.79	0.87
Расход воздуха (выс./сред./низ.)		м³/ч	800/595/417	1190/887/564	1300/969/661
Уровень шума (выс./сред./низ.)		дБ(А)	45/39/30	50/43/31	50/43/33
Внутренний блок	Габариты (ШхВхГ)	ММ	1087×495×200	1207×495×200	1207×550×200
	Bec	КГ	18.7	21.3	24.8
Трубные соединения	Диаметр труб на вх./вых.	дюйм	холодная вода RC3/4; горячая вода: RC1/2		
	Дренажная труба	ММ	НД 18.5		

4- трубный; 4-рядный

Модель			MKH3V150F-R4	MKH3-V250F-R4	MKH3-V350F-R4
	Производительность (выс./сред./низ.)	кВт	1.70/1.44/0.95	2.70/1.94/1.10	3.80/3.18/2.32
Охлаждение	Расход воды (выс./сред./низ.)	м³/ч	0.29/0.25/0.16	0.46/0.33/0.19	0.65/0.55/0.40
	Гидросопротивление (выс./сред./низ.)	кПа	18.2/13.7/7.5	17.0/9.7/3.5	39.2/28.4/16.9
Нагрев	Производительность (выс./сред./низ.)	кВт	1.40/1.23/0.95	2.30/1.78/1.22	2.88/2.49/2.00
	Расход воды (выс./сред./низ.)	м³/ч	0.12/0.11/0.08	0.20/0.15/0.10	0.25/0.21/0.17
	Гидросопротивление (выс./сред./низ.)	кПа	10.7/8.5/5.5	28.2/18.5/10.1	55.4/43.0/29.2
)лектропитание		В, Гц, Ф		220-240, 50, 1	
Іотребляемая мощность (выс./сред./низ.)		Вт	20/14/9	20/11/8	29/17/11
абочий ток		Α	0.21	0.22	0.28
Расход воздуха (выс./сред./низ.)		м³/ч	255/206/134	425/280/158	595/461/324
ровень шума (выс./сред./низ.)		дБ(А)	39/33/25	46/37/29	52/45/36
Знутренний блок	Габариты (ШхВхГ)	ММ	637×495×200	867×495×200	1087×495×200
	Bec	ΚΓ	12.6	15.3	18.7
Грубные соединения	Диаметр труб на вх./вых.	дюйм	холодная вода RC3/4; горячая вода: RC1/2		
	Дренажная труба	ММ	НД 18.5		

Модель			MKH3-V500F-R4	MKH3-V700F-R4	MKH3-V800F-R4
Охлаждение	Производительность (выс./сред./низ.)	кВт	4.60/3.75/2.83	6.05/5.00/3.43	7.65/6.19/4.54
	Расход воды (выс./сред./низ.)	м³/ч	0.79/0.64/0.49	1.04/0.86/0.59	1.31/1.06/0.78
	Гидросопротивление (выс./сред./низ.)	кПа	56.2/39.0/23.8	53.7/37.0/19.1	48.1/32.6/18.3
Нагрев	Производительность (выс./сред./низ.)	кВт	3.35/2.88/2.36	4.60/3.95/3.02	7.50/6.44/5.22
	Расход воды (выс./сред./низ.)	м³/ч	0.29/0.25/0.20	0.39/0.34/0.26	0.64/0.55/0.45
	Гидросопротивление (выс./сред./низ.)	кПа	69.6/54.7/38.2	132.3/104.2/63.7	71.6/56.2/37.4
Электропитание		В, Гц, Ф		220-240, 50, 1	
Потребляемая мощность (выс./сред./низ.)		Вт	52/28/15	92/46/19	102/49/22
Рабочий ток		А	0.51	0.79	0.87
Расход воздуха (выс./сред./низ.)		м³/ч	800/595/417	1190/887/564	1300/969/661
Уровень шума (выс./сред./низ.)		дБ(А)	45/39/30	50/43/31	50/43/33
Внутренний блок	Габариты (ШхВхГ)	ММ	1087×495×200	1207×495×200	1207×550×200
	Bec	ΚΓ	18.7	21.3	24.8
Трубные соединения	Диаметр труб на вх./вых.	дюйм	холодная вода: RC3/4; горячая вода: RC1/2		
	Дренажная труба	ММ	НД 18.5		

^{1.} Условия охлаждения: температура воды на входе 7 °C, температура воды на выходе 12 °C, температура воздуха на входе 27 °C (сух. терм.)/19 °C (влажн. терм.) 2. Условия нагрева: температура воды на входе 65 °C, температура воздуха на входе 20 °C (сух. терм.) 3. Уровень шума измерялся в реверберационной камере.

